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We discuss density of states functions for photonic crystals, in the context of the two-dimensional problem
for arrays of cylinders of arbitrary cross section. We introduce the mutual density of G{#H»E3S), and show
that this function can be used to calculate both the local density of sfaf¥3S), which gives position
information for emission of radiation from photonic crystals, and the spectral density of (@&€s, which
gives angular information. We establish the connection between MDOS, LDOS, SDOS and the conventional
density of states, which depends only on frequency. We relate all four functions to the band structure and
propagating states within the crystal, and give numerical examples of the relation between band structure and
density of states functions.
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[. INTRODUCTION treated classically. We choose to consider the two-
dimensional case, where we have line absorbers or emitters
The electromagnetic properties of photonic crystals nowof infinite length embedded in an array of cylinders of infi-
constitute an intensive area of theoretical, numerical, and exiite length. This has the effect of simplifying the theoretical
perimental efforf{1]. The two earliest papers on this topic development, for example, in permitting it to be carried out
[2,3] both highlighted the ability of the photonic crystal to through the calculation of a single scalar field component
modify the emission or absorption properties of an atom orather than requiring a full vector treatment, but the essential
molecule placed within it, through differences in the densityfeatures of our treatment carry over to point sources in an
of states within the crystal from its free space value. Giverarray of cylinders or in a lattice of spheres.
the remarkable progress in the last decade in the fabrication The environment of this photonic crystal influences the
of photonic crystals, we are now at the stage where devicegpility of atoms to emit and absorb radiation of a particular
such as microlasefg] are being fabricated. Optimal design frequency. This influence is a function of position in the
of devices relying on the emission and absorption propertieg,ystal, and also depends on the angular distribution of the

of a_tomsfv(\jnthm phc])ctonlc cfrysta.ls will T?ﬁu'rﬁ full character- 4 giation being emitted or absorbed. The dependence on the
Ization of density of state functions within them. ource position vectarg is encapsulated in the local density

In its turn the density of states can be effectively deduce C ;
from the knowledge of the Green function of the correspond- f statedL DOS), which is a function of frequency andrs,

ing problem[5]. Therefore the knowledge of the Green func- while_ the angular distribution is_encapsulated in the spectral
tion is essential for the complete characterization of the ragensny of state(;SDOS,_ depending om and t_he wave vec-
diating properties of the system. Note that the Green functiofi” Ko- These two functions are much more informative than
and the Green’s function method are one of the central eldh® density of state€DOS), which is a function ofw alone,
ments in solid state physi¢§]. The dynamic lattice Green but in many situations one may wish to combine both posi-
functions are discussed in Refg,8], while the static lattice tional and angular information for radiation problems in pho-
Green function is considered in RéB]. In contrast to the tonic crystals. This is achieved by calculating the mutural
Green functions defined in these references, here we ustensity of stateYMDOS), depending onw, rg, and Ko,
phased or quasiperiodic Green functions, in which the sourceshich we introduce here. We show that the MDOS
acquires an additional phase shift in moving from one unitM(rs,w,Kg) is a positive function, whose integral over the
cell to the other. This phased array of sources has been usé&dillouin zone (BZ) gives the LDOS, while itweighted
earlier to model surface acoustic wave devitkg]. Below  integral over the Wigner-Seitz celIWSC) gives the SDOS.
we show that these quasiperiodic Green functions contailf it is integrated over both cells, the result is the DOS. We
comprehensive information about the emitting properties oftudy the density of states functions using Green’s functions,
sources embedded in periodic arrays and give rise to diffeand also using the basis of Bloch functions, which provides a
ent density of states functions. convenient tool for establishing formally the links between
It is our purpose here to present a unified treatment of théhe various functions. We show that the LDOS and SDOS are
classical electromagnetic calculation of density of statesndependent functions, not being a Fourier transform pair, for
functions within photonic crystals. We stress at the outseexample, and that neither incorporates all the information
that the density of states, as used in Fermi’'s Golden rulepresent in the MDOS. We also emphasize the connections of
arises from a semiclassical treatment of radiation by atomghe four density of state functions with the band structure of
in which the atom is treated quantum mechanically, whereathe photonic crystal, and discuss their dependence on polar-
the electromagnetic fields with which it interacts can beization. The density of state functions and their relationships
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FIG. 1. Relationship between the various Green’s functions and density of states functions, with relevant equation numbers.

with each other and with Green functions are shown in Figresults should be changed for TE polarization, before making
1. concluding remarks.

For a previous discussion of LDOS, SDOS, and DOS, see
the review paper by Lagendijk and van Tiggeldd]. This Il. GREEN'S FUNCTIONS AND THE BLOCH BASIS
emphasizes the similarities and differences between quantum

mechanical treatments of electrons in structured materials W€ consider a two-dimensional periodic function describ-
and the electromagnetic problem, but is oriented more told @ real but otherwise arbitrary refractive index distribution

wards random distributions of scatterers than the orderef(")- We define the quasiperiodic Green function that obeys

case of the photonic crystal considered here. The definition'€ €guation

of some density of state functions have not yet become fixed 5

by wide usage. However, the DOS is clearly defined, and 2 . w2 .

subject to a normalization condition. We choose our normal- VGm(1rsio ko) 2" (NGw(rrs;w:ko)

izations for the LDOS and SDOS to ensure they reduce to

the DOS when they are functions of frequency aldgne.,

they are independent of andk,, respectively. 2 A
In the following section, we define the quasiperiodic

Green’s function, and express it in terms of the completaogether with appropriate conditions for that polarization on

basis of Bloch functions. We then proceed to the definition ofthe cylinder boundary. Here, 1 denotes the integer pair

the mutual density of states, and its connections with they m, R,=ne,+me,, wheree,, e, are the basis vectors of

other density of states functions shown in Fig. 1. In the fol-the array, which has a unit cell of arégsc and a Brillouin

lowing section, we use Green’s theorem to relate the groupone of areaAg,. Also, the functionn(r) is periodic in

velocity, energy density, and flux of Bloch modes in photonicposition, as is its square,(r). Note that the vectok, de-

crystals. We next explore m(_athods for numerical _calculatio_rﬁnes the quasiperiodicity or Bloch property of the Green’s
of band structures and density of state functions in photonigunction, either in terms of the field vector

crystals. While the bulk of this paper is concerned with TM A
polarization, we indicate concisely in Sec. VI how the key GM(r+Rp,rs,w,ko)=GM(r,rS;w,ko)e'k0'Rp, (2

—rs—Rp)ekoRe, (1)
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or in terms of the vectors specifying the position of the example, we can expand any quasiperiodic solufiga,r)
source in the central unit cell: of the Helmholtz equation in terms af,, as

Gu(r,rs+Rpy,@,Ko) =Gy (r,rs;m,kg)e *oRe. (3)
f(ko.r) =2 cith(ko.r), (10

We recall at this point two forms of the Poisson summa-

tion formula[12] where from Eq/(9)

Awsc 8(r—rs—Rp)ekoRe=" el (1) (g)
P n C|=f e(r)f(ko,r) ¢ (ko,r)d?r. 11y
WSC
giving the plane wave representation of a sum of point
sources, and its reciprocal form Applying Egs.(10) and(11) to the right-hand side of Eql),

we obtain
Az, S(k—Qp)=3 € to, 5) .
i S olr—re-Rpe o ®=3 nr gy (ko.rgth(ko.r).

In Eq. (4), Q=K+ kg runs over plane waves with the cor- P~~ (12)
rect quasiperiodicity K, specifying the set of all reciprocal
lattice vectors Thus, we can rewrit€l) with its source term

as a sum of plane waves: The asymmetry in Eq(12) betweenr andrg is misleading,

since the left- and right-hand sides are only nonzero if

2 =rg+Rp, which guarantees that’(r)=n?(r,). Using the
VZGM(r,rs;w,ko)Jr—2n2(r)GM(r,rs;w,k0) expansion(12) on the right-hand side of Edl), we can
c obtain the expansion of the Green’s functi@g, in terms of
1 the Bloch functionsf(kq,r) as
:A E el Qn(r=ry (6) 5 .k K
WSC h n=(r I I
N - - - . GM(rars;w,ko):z (25)¢| (2 0 ;‘)wl( 0 2). (13)
To be definite, we will conside; or TM polarization, so T ny(nN[e—wi(ky)]/c
that Gy, refers to thez component of the electric field, with
Gy and its normal derivativéGy, /dn being continuous at Using the Plemelj formula
interfaces. FoH| polarization,Gy and (1£)dGy /dn are
continuous. 1 _b 1 —imS(X—X) (14)
Equations(1) and(6) define an inhomogeneous or source X—Xotim  X—Xg 7 o
problem. We can also consider the homogeneous problem,
whose solutions are the Bloch functions or photonic modesve arrive at
for the array:
5 Gu(r.rs;w,ko)
VZ2m(ko,r 4 Omnzy Ko,r)=0, 7 i rc?n?(r
lr/fm( 0 ) C2 ( )'/’m( 0 ) ( ) :PGM— 2( s) z (/la(ko,rs)l/fm(ko,r)
2wn“(r) m
together with the boundary conditions on the cylindé,(
dymlon continuous and the quasiperiodicity condition X 8(w= wm(ko,r)). (15)
Um(Ko, T +Ry) = (Ko, r)ekoRe, (8) Here, P denotes the Cauchy principal value. Note that, when

r=rs, the second term on the right-hand side of Edp) is
Note that the frequency for thath mode is determined by purely imaginary since the produgty* then becomefy|?.
the differential equation(7), the quasiperiodicity condition So the two terms on the right-hand side of Efj5) then

(8) and the boundary conditions, so that= wy(ko). correspond to real and imaginary parts, respectively.
The functionsy,,(kq,r) are orthogonal with respect to the
inner product IIl. DENSITY OF STATES FUNCTIONS

-~ * 2 One way to calculate density of states functidsee the
(o ,4//m)—stcg(r)w,(ko,r)zpm(ko,r)d r O left side of Fig. 1 is through the imaginary part of the
Green’s function, evaluated when the field point coincides
as is readily proved using Green’s theorem. We will assumevith the source pointunder those circumstances, of course,
that the set of Bloch functions for a fixdd, form a com- the real part becomes singulaFor example, we can con-
plete, normalized basis of functions. Some relevant properstruct the LDOS L(rs;w) from a Green’s function
ties and references to previous relevant work may be foun&(r,rg; ) which corresponds to a single source, rather than
in the paper by Allaire, Conca, and VanninatHdr8]. For  the quasiperiodic superposition of sources evident in(Ex.
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w2 or, using Eq.(17),
V2G(r,rg;m)+ ?nz(r)G(r,rS;w):cS(r—rS). (16) .
_f M(rs,w,ko)dzko
ABZ BZ

Given G, L follows from the definition 8]

2w - 20l _
£(r5;w)=—ﬁlm [G(re.re;0)] U, 17) ——FImG(rs,rs,w)—C(rs,w). (24)

Thus, the LDOS follows from the MDOS by integration over

wherel/ is the normalization factor, o
the Brillouin zone:

— 2
u fWSCS(rS)d fo 19 L(rg,w)= ﬂ 2 d2k05(w_wm(ko))llr/fm(kOvrs)lz-
ABZ m BZ
corresponding to the dielectric constant integrated over the (25
Wigner-Seitz cell.
We will now establish the relationship betwe&g, andG From Eg.(25), we see that the LDOS obeys the same

shown in Fig. 1. The integral of the Bloch factor occurring boundary conditions as the functiogs i.e., both this and its
on the right-hand side of Eq1) over the Brillouin zone is Nnormal derivative are continuous across cylinder boundaries.
zero unless the lattice vect®, is zero: It is a non-negative function throughout the Wigner-Seitz
cell, and is periodic. However, it does not obey the Helm-
1 holtz equation. In fact, it satisfies
“— | exp(iko: Rp)d?ko= 8,0, (19

A
BzJBZ 5

V222 n2(r) £
o) | £ 0)

where Agz is the area of the Brillouin zone. Hencé, is
obtained fromG,, by integration

2U
. 2 S [ s om VKo
Gl rsio)= 5| Gultrsiokodk. (20 w2 T Joz
BzJBZ
-V (Ko, re)d%kg, (26)

We can now define the mutual density of states by anal-
ogy with the local density of statd47): wherew,,= w,(Kg). The interpretation of Eq26) is that the
source of the LDOS is the combined electromagnetic energy
2w density of all propagating modes.
M(rs,0,Ko)=——=Im [Gy(rs,rs,@,ko)] U Another physical interpretation of the LDOS can be de-
C ; . ) .
duced from Green’s theorem applied to the unit cell contain-

ing the primary source
=2 o= on(ko))|Ym(ko,ro)|* U,

1) f J(GVZG*—G*VZG)dA
where the summation goes over all modesf the photonic IG* IG*
crystal andy(kq,rs) is the eigenfunction normalized ac- = L_L G an -G an ds. (27

cording to

Taking the source to be in the exterior regidn of Fig. 2,
J e(re)|¥m(Ko,re)|?d?re=1. (220  the left-hand side of E(27) reduces to Bm[Gy(rs,rd)].
WsC The contour integral aroun@ on the right-hand side of Eq.

. . : o . (27) can be shown to vanish for lossless media after applying
Thus, the MDOS is a non-negative function, which is zero ing,q continuity conditions or€ and again applying Green’s

any band gap, i.e., in any range @fin which there are N0 haorem to the interior regio _ . Thus
propagating modes of frequenay, (ko).

In keeping with Eq.(20), we integrate Eq(21) over the IG* IG*
Brillouin zone: 2i Im[G(rS,rs,w)]zf (G -G )ds. (28
r an an
1
A—f M(rg,w,Ko)d%kg The integral on the right-hand side of E88) is proportional
BzJBZ to the outgoing flux through™ due to the source and we
deduce
Zwuf d2kgIMG ko) (23)
=— m re,ls, o,
Aggmclez O MUes @0 201IM[G(rs,fs,0)]= — 2KZoF, (29
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YA
T
(di2,di2)
Uy FIG. 2. The geometry for the
application of Green’s theorem. A
cylinder of radiusr =a has a con-
tour C_ just inside its surface and
C, just outside. The unit cell has
bounding contoud’, and areaJ,
>X divided byC into U_ andU, .
(-di2, -d/2)
whereF is the outgoing flux and, is the impedance of free 2|y (Ko,ro)|2
space. Thus, the energy that can be extracted from the source Gu(rg,rs;w,kg)= 2 2—25 (33
depends directly on the available density of modes given by " [0~ i (ko) ]
the MDOS:
Hence, using the normalization conditi¢22)
20 k%o
£(rs,w)=—?Im[GM(rS,rS,w)]= F. (30 1
r

_f GM(rSirs;wiko)e(rs)dzrs
UJwsc

We now move to the right-hand side of Fig. 1, and inte-
grate(21) over the WSC:

C2
— —— =Gp(w,kp). 34
1 4T [o—atikg] ke
2| etramio ko,
wse From the Plemelj formul&14), we arrive at the equation for
the SDOS analogous to the definiti¢h7) of the LDOS:
=3 o= on(ko) [ _e(ralym(ko 1ol

— 20U

(3D) S(w,ko)= ——
7mC

IMGp(,Kq). (35)

Hence,

Comparing(32) and(25), we see that the SDOS is deter-
1 mined entirely by the dispersion equation for the bands, i.e.,

Z[fwscdzrss(rs)M(rS'w'kO):% (0= wm(ko)) by their shape, with any position information having been
integrated out. The LDOS is determined from the squared
=S(w,kp). (320  magnitudes of the modes, integrated over the isofrequency

contoursC(w,,), representing the curves following the vec-

This result is the spectral DOS(w,kg), which is a function  torsk, for which modem has the specified frequency—i.e.,

of frequency and position in the Brillouin zone incorporating w = wy,(kg). Thus, the LDOS combines information con-
the information contained in the complete photonic band diaeerning both the band shape and the form of the modes, but

gram for the structure in question. it has lost information about directional dependence through
We now relate the SDOS to the Dyson Green functionthe integration over the Brillouin zone.
[11,7] Gp(w,kq). From Eq.(13), The total density of states is defined as
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) We can also integrate EQR6) over the Wigner-Seitz cell.
N(w)= ZJ e(rg)L(rs,w)drs. (36 The term involving the Laplacian integrates to zero because

wse of the periodicity of £(rs,w), and the other two terms are

After substitution of Eqs(21) and(24) into Eq.(36) and use both proportional to the dens!ty of statmw)..Th(_e result IS
of the normalization conditio22), we obtain ?2r12)alternate way of expressing the normalization condition

m

N(w)=, if S(w— wmy(kg))d2ke w
ABZ BZ " f Vdfm(kOyrs)'V¢;1(k01rs)d2rs:_2- (43)
WSC C

m

= A S(w,ko)d%Kq. (37) We define the photonic band as the surface for moda
BzJBZ : . -
defined by the single-valued functiasn, (ko) askg runs over
Thus, we have established the two paths to the density C}Ee B“”OU"? zone. We note t_hat the smgle-v_alued nature Of.
- the mode dispersion relation is guaranteed since the photonic
statesN(w) shown in Fig. 1. band th fold d this in t foll f th
Now we expand in a Taylor series in the vicinity of the an Cin?o thave 0lds, zlan i tIS In turn f.o _;)ws(,)from N
isofrequency contoufi.e., the unconstrained vectds, is necessity for the group velocily to remain finite. COUrse,

close to the vectoky(w,) lying on the isofrequency con- as the frequency_lncreases, so does the tendency to have
tour] to give band surfaces which pass through each other. However, the

absence of folds means we can always disentangle intersect-
0= 0n(Ko)= Vi - [ko—Ko(@m) ]+ Ollko—ko(wp[?. 119 Pands. Then, from Ed37),

(38) 1
j N(w)dw=+— dzkof Sw— wn(kg))dw
After substitution of this equation into E¢37) and use of band m AszJez band m
the propertys(ax)= 8(x)/|a| we find 1
_ 2,

1 . Aoy BZd ko=1. (44
N =3 | (i ko= ko wm DKo, (39

m fsz/BzUg Each band thus contributes one state to the integrated DOS,
. i - completing Fig. 1.
wherev,=|V, | is the group velocity and represents the |5 the Appendix, we illustrate these results by calculating
unit vector in the direction oV, o (that is, the direction the various density of states functions for the case of periodic
normal to the isofrequency |in)35To carry out the integra- boundary conditions, but with a uniform refractive index
tion over the Brillouin zone, we expresko as kO (i.e., nC:nb). There the effect of the norma”-zati-on factar
= (kot,Kor), Wherek, is the projection ofk, onto the tan- ~ ¢an be seen, in that the LDOS and DOS coincide.

gent to an isofrequency line, while,,=ko-U. In terms of We note that, from Eq21), the functionM is periodic in
these new variables E¢39) ta’kes then form bothk, andr, as well as being real valued and non-negative.

It follows that it, and equally welt M, can be expanded in
series involving both the reciprockl, and direct baseR,,:

1 1
N =S 2 | - 30k oo kol (40

m Bz .
s(r) M(rs,w,kg) =2, mypeKnisthoRe,  (45)
The integration with respect tq, (in the direction normal to ph
the isofrequency lingscan be done in closed form using the

X ! wherem, ,, are appropriate expansion coefficients. Hence,
8 function and we obtain p.n pprop P

we see that

1 1 _ _
N =2 2 Loy T WD (L) =5 |3 my e et Wk,
: . : . (46)
whereC(w,) is the isofrequency line= w,,. This expres-
sion for the density of states agrees with that found in stanand, using Eq(19), we find the following Fourier series in

dard textq14]. reciprocal space:
Equation(25) can be treated in a similar fashion, to give

|‘//m(k0=rs)|2d
C(‘”m) vg

1 s(r) L(rs, ) =2, mopen's. (47)
L(rs,0)=U> 71— kot (42) "

"o For the spectral density of states, we use B§),
Of course, if we substitute E¢42) into Eq.(36) and use the

S . . 1
normalization condition(22), we return to the expression :_J 2
1), S(w ko) 7 SCa(rs)/\/l(rs,w,ko)d rs. (48)
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Using Eq.(45) in Eq. (48), we find the following Fourier (02— w?)
series in direct space: —ZL Y’ HAA
C +
Sl kg) = 2WSC iR, (49) (NFwri—Niwr)
U u e e fu Y dA=0. (53
Hence, We write
AWSC dw
N(w)szo’o (50) wr,‘r|:wm+ Wmén—f_! (54)
Cc

Note that the Fourier series for the local DO®) and the 4 expand both terms in E€3) to first order indn. After
spectral DOS49) involve disjunct sets of the Fourier coef- ¢41q algebra, we find

ficients of M, with the only element in commofthe mg
term) determining the density of states.

N= [ lunlanen? [ Junian
U, u_

IV. ENERGY, FLUX, AND GROUP VELOCITY
—Necwm

- - 2
awm/anJU_Wml dA.

From Eq.(55), we see thabw,,/dn.<0: increasing the cyl-
inder index lowers the frequency of the photonic crystal
bands, forE polarization, as would be expected on physical
grounds.

Consider now

We now specialize to the case where the inclusions are (59)

circular cylinders of refractive indew. in a matrix or back-
ground material of indexy,, as in Fig. 2. Given a modé,,
found from the homogeneous probldi) and (8), we need
to normalize it to give

Nm:<wm-¢m>: fwscs(r)‘ﬂm(kOvr)lprn(ko,r)dzr:1.

(51 N =n2 J || 2dA. (56
U_

Rather than achieve this through numerical evaluation of a

double integral, we can use Green’s theorem to obtain th¥Ve evaluate this using Green’s theorem once more. If we
normalization in terms of a sum over expansion coefficientsonsider the particular case where the cylinders have circular
of the homogeneous solution. The analysis also will lead usross sections, we can use the expansions

to a useful relationship linking the energy flux carried by a

mode through a boundary of the unit cell to its energy and

group velocity.

We apply Green’s theorem to a pair of modgs, #,,
corresponding to the same quasiperiodicity ve&tgrbut to
cylinders of refractive index, n/, respectively. The dif-
ference in indexn,—n.= n is associated with a difference
in frequencydw=w/,— oy, . Then

f ('//r/n*vz'vbm_ l,meZgb”rkn)dA
]

I W'
_ kM
—L(lﬂ m an l/fm an dl
e Om YR
+fc [ :.]W_ m N ade
- r=a
—f Y S¥m Wn adf. (52
— _
c,l M™oan an | _.

The integrals oveC, andC_ cancel through the boundary
conditions, while the integral ovdr gives zero because of
the quasiperiodicity conditions common t6,, and ,.
Hence,

wm:Z Cl"Ji(nckr)e''? (57)

and
1,0,’n=2| CM I, (nikr)el?, (58)

to give using a first-order analysis

—2makn,c? o ,
o e naejang > |Cal*inka)d (ncka).
(59)
Combining Eq.(55) and(59), we find
e makc®
~ (dwm! Ing)(0m+ Nedwm/dng)
X 2 |Crl*3i(ncka)Jf (ncka. (60

Consider next the case whedg, and w/, differ because
of a difference in thex componentk,, of ky. Then from
Green’s theorem
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12 2 I
Wy — Wy 2 % . % Ithm I A/._f
Tfun (1) Ymipy dA= JF(‘//m on me)dl- ngz_ d (70)
(61)
This result on the left-hand side is the product of the group
Expanding the left-hand side to leading order, we find velocity and the energy density of the mode. On the right-
hand side we have the vectorial flux density associated with

20y don, \x Om L the mode. If we normalize the mode so th¥ét 1, then Eq.
o2 kg Koy N= fr Ym Sn Y p di+---. (70) takes the simple form that;=d.F.
62
(62) V. METHODS FOR CALCULATING DENSITY
For the right-hand side, the integrals ower —d/2 andy OF STATE FUNCTIONS
=d/2 cancel by the common quasiperiodicityaf, and ¢, . A. MDOS, mode, and group velocity surfaces

Using the Bloch factors corresponding kg, and kg, , we

obtain for the other two sides We start with the MDOS, which follows from Eq21)

once the Green’s functio®,, is known. The calculation of
a2 . I Gw has been discussed by Poulteinal. [15], and we sum-
(114’“*?— mn ) dy marize the method here for TM polarization. It relies on
x=—d/2 multipole expansions foG,, inside the central cylindeila-
beled with a superscript)Q

[ei(kOX—k(’)x)d_ 1]
y=—d/2

dr2 J dul*
=—i5k0xdf (W*—d’”‘ v zﬁm) dy
y=-dl2 x=—d/2

mon 7™ on ” ,
Gu.in(r,0)= > CoIn(nckr)e™?, (71
+.o.., (63 m=—c

Hence, equating coefficients kg, , and outside cylinder 0,

P di2 P
me=czd|m“’ « I
y

m 9x

O dy|. (64 GM,ext(r,6’)=m:2_oc [A% . (npkr)+ B2 Y (nykr)]e™?.
Kox =—d/2

(72

We interpret Eq(64) in terms of electromagnetic energy The multipole coefficients for theth cylinder follow from
fluxes if we evaluate the electric and magnetic fields associnose for the central cylinder using EQ):

ated withy,,,, respectively,

x=—d/2

BP =B e'ko Ry, (73
E=(0,04m) (65)
The boundary conditions at the cylinder surface enable the
and multipole coefficient<C? andA?, to be expressed in terms of
- BY , and, in particular,
H= S ( m S, 66
Tl oy 0 (©0 A= —MnBS, (74
Hence, the Poynting vector associated with this mode is _anm(anrc)Yg(nbkrc)—nCJ;n(ncer)Ym(nbkrc)
C2 " anm(nckrc)Jr’n(nbkrc)_nc‘]r’n(nckrc)']m(nbkrc) .
- *
o= wmlm(t,me(//m). 67) The multipole coefficients can be obtained by solving a

set of linear equationg&he Rayleigh identity
Accordingly, the flux of energy through the side of the unit

cell atx=—d/2 is
MmB%Jr; (—1)™sy_ BY

e c2I “'d/z + m q } 68
=—1Im — Y| 1 A 1 .
om | ) x| =7 Ya(krole M+ 2 > (=)™ ST 3 (krg)e .
€
The result is that Eq.64) becomes (75)
8me_d 69 The two terms on the right-hand side arise, respectively,
=dz, (69) from the source in the central unit cell and the sources in all

IKox
other unit cells, reexpressed using Graf’s addition theorem.

or, in vector form, adding in the corresponding result for aThe quantitiesS] are sums over the array of cylindrical har-
perturbation ok, , monics phased by the Bloch factor. Once the coefficigfs
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)1
>

FIG. 3. (Color onling (a) Surface showing the frequency of the 0.04
acoustic band as a function of the Bloch vectby.Surface showing
the magnitude of the group velocity divided byf this mode as a
function of the Bloch vector. TM polarizatio|m=0.3, n.=3.0, 0
n,=1, square array of unit period. X M

FIG. 4. Detail of Fig. 3 along the lineEX (a) and XM (b).

are obtained by solving a truncated set of E@S), the value
of M can be obtained from Ed21) using the expansion
(72), taking care to subtract the divergent contribution due tcat X and its three equivalent points, with each contributing
the source in the central unit cell. half of a saddle point to the Brillouin zone. The four corners
A similar approach can be used to find photonic Crystapf the Brillouin zone each contribute one quarter of the
modes ¢,,,. In this case, the multipole coefficients result maximum to the Brillouin zone. Note that the group velocity
from a homogeneous system, there being no source term kganishes at bot and M.
the Rayleigh identity: The sections of the group velocity surface shown in Fig. 4
give the variation of the nonzero Cartesian components of
this vector along the symmetry linésX andXM. The value
of vg/c atI' is 0.553 68, which agrees to all figures quoted
with the reciprocal of the homogenized refractive index for

For a given value ok, the determinant of this identity can this polarization(see below. The nonzero Cartesian compo-
be calculated over a given range of valuessofthe zeros of ~ nent ofvy can be seen to change sign at btand M.
the determinant give the allowed valuesa@f(ky). We can
perturb the values of the componekts andky, slightly to
obtain the corresponding components of the group velocity
vy by numerical differentiation. By changing the cylinder  To evaluate the SDOS, LDOS, and DOS we can divide
index n. slightly, we can obtaiw,,/dn; by numerical dif- the irreducible part of the Brillouin zone into a grid of values
ferentiation, and thus evaluate the mode normalization factoky. For each of these, we calculate the values for eagh
N from Eq.(60). Knowing vy and.V, we can use Eq70) to  and place them in an array which records those modes lying
evaluate the flux density associated with the mode. in specified frequency ranges. Appropriately normalized, this
In Fig. 3 we show both the variation @b with Bloch  array gives the discretized spectral density funcféw, k).
vector across the first Brillouin zone for the acoustic bandThe density of states functioN(w) results from combining
and the variation of the magnitude of the group velofity  all entries for varying, which lie in the specified frequency
across the same region. Note that the acoustic band surfacanges. In order to calculate the functig(rs,»), we must
exhibits within the Brillouin zone one maximum, two saddle for each point in a grid covering the Wigner-Seitz cell, ac-
points, and one minimum, in accord with general argumentgording to Eq.(25), accumulate the modulus squared value
given in Callaway[16]. The minimum is atl’, entirely  of the normalized wave functiofor wave functions, if more
within the Brillouin zone, and the mode surface there comeshan one corresponds to a given pair @fand k) for all
to a conical point, with slope given by the effective refractivevalues ofk, and for each frequency. This is the procedure
index of the moddsee below. The two saddle points occur used by John and Busdii7] to calculate the LDOS at se-

MmBOm+§€: (—1)misy  BY=0. (76)

B. SDOS, LDOS, and DOS
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25 d being the period of the array. In this region,

] A 2
: No(w)~ ﬂ;w (78)

®
15

DOS

Beyond the linear region, the DOS increases sharply, in fact
1 ] diverging logarithmically{20], before decreasing again and
dropping sharply to zero at the edge of the first band gap.
There are 1000 points on the curve, and the numerical test of
the relationship(44) gives the value 1.00073 for the first
band.

025 0.5 075 125 15 There is an interesting property suggested by Fig. 5. If the
) ® ® ) low frequency straight line is extrapolated kb, it passes

I X M L .

very close toNy(wy). This is a property which holds for the
phonon density of states for the square lattice in two dimen-
sions [8]. However, it does not hold in general for two-
4 dimensional photonic crystals: we have verified numerically
that, if the cylinder radius of Fig. 5 is perturbed away from
3.5 a=0.3, the apparent coincidence of the low frequency model
with Ng(wy) is removed.

0.5

—

4.5

DOS

25 C. DOS and critical points

The behavior of the DOS near its logarithmic peak and at
4 the edge of the band gap can be understood in terms of a
critical point analysis, well presented by Bassani and Pastori
1378 ) 138 1381 1322 Parravicini[20]. Around critical points, the photonic bands
) have a frequency which varies with wave number in qua-
dratic fashion, characterized by effective mass parameters we
FIG. 5. (Color onling DOS as calculated by numerical integra- will denote by Cyx and Cy. The logarithmic peak in fact
tion for the square array, with the points giving the analytic esti-corresponds to a frequeney, which is the value ofw for
mates based on E@80), the sloping straight line giving the low the first mode at the end of the segmdnk—i.e., ko

frequency asymptote based on the effective indéR, and the =(w/d,0). Themode surface has a saddle pointéatnear
horizontal straight line to Eq81), for the data of Fig. 3(a) Whole which point we approximate its form by
of the acoustic bandb) region nearX.

L . . . (Aky)? (Aky)?
lected points in a three-dimensional lattice, and by Moroz 0= wy— +
[18] for the one-dimensional case. 2Cx  2Cy
A second, slightly different method is to take the fre- -
quency data co?res)gljonding to a grid of values filling the"heré Akx=ko,—m/d, Aky=Kkoy. We show in Fig. 6 the
Brillouin zone and to fit a smooth interpolating function to it. Variation of w along the symmetry line§'X and XM, to-
This function then enables the construction of isofrequency@ether with least square fits to the dispersion relation to the
contours and the group Ve|ocit§as shown in F|g B by left and rlght ofX. These give the numerical estimatesXat
numerical differentiation. The density of states can then b&x=1.431, Cy=8.566.
calculated using Eq(41), where of course we need only  We display in Fig. 7 isofrequency contours across a quar-
integrate over the segment of the isofrequency contour lyinger of the Brillouin zone. These are circular ndar and
within I'XM, given the symmetry properties of the integrandbecome more distorted with increasing frequency. A key fea-
evident from Fig. 3. ture is evident in Fig. 7, which explains the key difference in
In Fig. 5 we show the DOS as a function of frequency forthe contribution to the DOS of the saddle po¥ifrom that
the first band of a square array of dielectric cylinders, withof the band maximunM: the length of the isofrequency
the numerical results from either of the above methodsontours neakK tends to a constant, whereas nbhit tends
agreeing to better than graphical accuracy. There are threge zero. Also given in Fig. 7 are two straight lines starting at
regions evident. At low frequencies, the DOS is approxi-X and Y, with respective slopes—+Cy/Cx and
mately a linear function of frequency, its slope being deter-— \/C,/C,, which indicate the local separators between the
mined by the homogenized refractive index, which for  contours centerd ofi and M.
this polarization is the result of the linear mixing formula  The contribution from this point and the three equivalent
[19]: points to the DOS is of the forf20]

+- (79

mr2n+ (d?— mré)n?

d2

4
n2= , (77 No(w)=— A—BZ\/CXCY[In|w—wX|+C], (80)
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175 for C an additive constant. The comparison of E&p) with
/ the numerical DOS curve shown in Fig. 3 uses the value of
' best fitC=—1.
125 The local density of states aty is, from Eq.(42), domi-
nated by the contribution fromyo(X,rg)|?. As the frequency
o ! sweeps through the value corresponding to a critical point,
. the LDOS becomes proportional [ig|? for that point. Thus,
as w increases fronwy to wy,, the spatial pattern of the
05 LDOS evolves from gr(X,rg)|? to | (M, rg) 2.
- The edge of the band gap occurs at the pditwhere
ko= (7/d,w/d). This is a maximum of the band surface, and

this critical point gives a contribution

r X M
No(w) = (81)
W)= 1
1381 X ° 2m
MM./ i.e., we expect the DOS to flatten out at the band edge, be-
fore falling steeply to zero in the gap. Note that, for the point
138 M, by symmetryCy=Cy=C,,, with a least squares fit to
the data in Fig. 6 givingCy,=5.269. The resul(81) is vali-
@ dated in Fig. 5.
Using Eq.(81), the form of the mode surface neldris
1.379
(AKZy+AKZy)d?
0=y A7 No(wny) +e (82
137 -006 -004 -002 O 002 004 006 where Ak, =Kox— m/d, Akyy=Koy—7/d.
FIG. 6. (Color online (a) frequency of the acoustic mode along D. LDOS

the lineI’XM, with the sloping straight line corresponding to the
effective index of Eq(77). (b) detail nearX, showing least squares
fits according to Eq(79), which determineCy andCy at X, for the
data of Fig. 3.

We next consider the local density of states for a specific
frequency value. To evaluate this we need to evaluate the
integral (42). We have carried out this using a method of
calculating flux-normalized Bloch functioigl1]. To convert
from a Bloch function normalized with respect tsay) the
flux 7, along they axis to a mode normalized with respect to
Y M its electromagnetic enerdys in Eq.(22)], we use Eq(70),
with the result that the integrand in E¢42) involves the
ratio vgy/v4 rather than /. Note that it is sufficient to
carry out the integral along the isofrequency contour over the
first quadrant only, by virtue of the symmetry of the square
array and the circular inclusion. Figure 8 shows two views of
the local density of states, as a function of position in the unit
cell. Note that the LDOS strongly peaks in the cylinders, and
both its value and its normal derivative are continuous at the
cylinder surface, as expected. We can numerically integrate
the local density of states weighted by the dielectric constant
over the unit cell, to provide a test of E¢36). For the
frequency of Fig. 8, the numerical integral gave 1.0472, in
satisfactory agreement with the independent value455.

2:5

1.5

0.5 E. Modes at symmetry points

The Rayleigh identity(76) takes an interesting special
form at points such aX andM. Since the correspondinig,
has the property that this anedk, are separated by a recip-
rocal lattice vector, the lattice sun® are equal at+k.

FIG. 7. (Color onling Isofrequency contours for the acoustic Using also the symmetry properties of the square array, we
band, and straight lines giving local separators of contours Xear find that the lattice sums are real a8y, _,=0 for all inte-
andY, for the data of Fig. 3. gersl. The Rayleigh identity then becomes

T 0.5 1 1.5 2 25 3 X
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while the even solution is nonzero thef@ven the coeffi-
cient By is nonzerd. We thus expect, as is in fact evident
from numerical result§22], the even solution to correspond
to a lower frequency than the odd solution, with the former
giving a point on the acoustic band surface and the latter a
point on the optical band surface.
e The Bloch factor expko-RP) for point X is exp{mp,),
"&:2&%::‘33;::1:;3:; _ whereR,=d(py,p,). Using this to connect the values ¢f
R in adjacent unit cells, we can deduce the following properties
of the even solution:

ay
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o J0le,
LG
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o,

o

=0 ony=0,=*d,...,

&
&
20
o

9

L
0.'

y=+d/2,+3d/2, ...,

o X; X,
M=0 on x=0,*=d, ...,
1.5 X
ip Pe(X;x,y)=0 on x==*d/2,£3d/2,...,
Pe(XiX,Y) = e XX, —Y) = he(X; = X,Y) = the(X; =X, —Y)
g °° for (x,y) e (WSC). (86)
0.6 The Bloch factor expky-Rp) for point M is expim(py

+p,), whereR,=d(py,p,), so that for this value ok, we
obtain similar properties to E¢86) along lines at 45° to the
0.3 X andy axes.

-04 -02 0 02 04 The odd solution has the following propertiesXat
FIG. 8. (Color online The local density of states for a square APo(X;X,Y)
array of cylinders 4=0.3d, n.=3.0, A=5.0d, TM polarization. ay =0 ony=0*d,...,
=+d/2,£3d/2, ...,
MmBOm+; SgntwZn:O- (83 y
IXxy) = +d/2,+3d/2

Equations(83) break into two separate families: the set with a0 onXx==dis=sdls,
even order multipole coefficients and the set with odd order
multipole coefficients. As the boundary condition terMs, Po(X;x,y)=0 on x=0,%d, ...,
are real, the multipole coefficients in either case may be
taken to be real, and they have the property tBat, Po(XiX,¥) = ho(XiX, — )
=(—1)"B,,. The potential expansions for the even solution
inside and outside the central cylinder are =—o(X;—X,Y)

- == o(X;=x,—y) for (x,y) e (WSO).

Yind(1,0)= 2 &anComlam(Nckr)cod2mo), - (84) 87)

. The symmetry condition§36) and (87) ensure that for both
B 0 the even and odd modes the energy flux dengityy/on
'pex{(r'a)_m;,w &2ml Azmdam(NpKr) vanishes at each point on the boundary of the Wigner-Seitz
cell.
+ Bngzm(nbkr)]cos{ 2mé), (85 There is an interesting special case for TM polarization in
which an analytic solution may be found for the lowest band
wheree,,=1 if m=0 and 2 otherwise. All the coefficients nearl’, which does not give a band surface with the conical
A, B, and C here are real, as is the functioh The odd form of Fig. 2. This case is that of the square array of per-
solution is similar, except thatrid is replaced by th—1. fectly conducting cylinders, which has been studied by a
However, this difference enables us to see that the odd solumumber of author§23—26. The dispersion equation for the
tion must be zero at the center of the high index regionacoustic band is
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(Akg)3c? where G and G,, are related by Eq(20) and where the
w=or+ W e (88) normalization factor is now very simple:
where, because we are expanding adoutky,=k, and Uy = f d2r = Aysc. (96)
wsc
, 2mc?[ re |1 _ . o
wp= " InE+C +..- (89 The mutual density of states for this polarization is

with C=1.31053292[25] for the square array. This band MH(fs,w,ko)z—2—w|m[GM(fs,fs,w,ko] Uy
then has a minimum af, which marks the top edge of a wc?
band gap starting at=0. The form of Eq(82) for this band

minimum is =2 80— on(ko)| P m(ko.rs)|? Uy .
m

(Akg)?d?

—ort —— .
w=or 47No( wr) ’

(90) (97)

The local density of states is now
and so

U
ond? Latreo)= 3 S | dkoo(o—an(k) ¥n(kora)?,
= ... BZ m BZ
No(@r) PR (91 (99)

Thus, in this particular case, we have an analytic estimat¥/here this function and &(r) times its normal derivative
giving the density of states at the top edge of the first gap i€ continuous across interfaces. It obeys the governing
terms of the frequency there, with that frequency also beingduation
determined analytically by Eq89). Asr.—0, bothwr and

No(wr) tend to zero slowly, as the square root of the inverse

of the logarithm.

2

w
V. +2—Ly(rs,w)
C

VﬁH(rSIw)

n?(r)
VI. TE POLARIZATION ZUH

=2 f S(w— o)
We give here the necessary changes to the key formulas n*(r)Agz m JBz
of Secs. Il and 11l for the case of TE polarization. We denote X VW, (Ko,re)- VIF (Ko,ro)d?Kg (99)
the Bloch modes for this polarization b¥,,(k,,r), and we mets mehs ’
require at the cylinder boundaries thiatand (1£)9W/dn be  wherew,,= w(ko). The spectral density of states is
continuous. The appropriate form of the Helmholtz equation,

true in the sense of distributions, is thg2v] 1 )
) Mok =S s onko)
2 HJWSC m

1 wh
V.(nz(r)V\I’m(ko,r))+?\I’m(k0,r)=0. (92) :SH(k01w)y (100)

This then results in the inner product form replacing &4, and is connected to the Dyson Green function again:

—ZwUH
<\1f,,xIrm>H=fwscqfl(ko,r)«p;(ko,r)dzr. (93) Shko,@)=——5=IM[Gp(w.ko)]

Hence, the appropriate expansion €y, is now _ —2w| 1 (101)

7 [P wd(ke)]

W (Ko,rs)W(ko,r)
Gu(r,rg;o,kg)= . 4 i i
m(rrs;@,Ko) 2 (07— wZ(ko) I 99 The total density of states is

. - 1 ) 1 5
Thg other key equat|on.s foIIo_w, generally, py omitting the  N(w)= u_f Ly(rs,0)d?rg= A_J S(Kg,w)d%kg.
weighting factor of the dielectric constant which occurred for HJwsC Bz/BZ

TM polarization: (102
> Its integral form over isofrequency lines is once again given
Lu(rsiw)=— —wlm[G(rs re;o)] Uy (95) by Eq.(41), while the corresponding integral for the LDOS
1 2 ) 1 ’ .
7C is
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i |\I’m(k0ars)|2dko Y M

t-

Ly(rs,w)=U,
H( S ) H% ABZ C(wm) vg

(103

With these results, the necessary changes to other equa-
tions in Secs. lll, IV, and V are obvious, with perhaps two
exceptions. The first is the derivation of the result equivalent /
to Eq.(55), §

/\/Hzf |x1fm|2dA+f W, 2dA
U, u_

7
X

2 *
—wn ’ c J IV
= + -
Nedwm!dng JU_W’“' dA w2 n? C_\Pm on !
(104
. . . _ Ng ()
Using Green'’s first formula, this can be written as
1 I
dwpn Wm .
an. NH:_I']_C y V¥, - VI dA. (105 0.8l

Once again, we can conclude that the effect of increasing the 0.6
cylinder refractive index is to lower the frequency of all pho-
tonic bandg(irrespective of the shape of the cylinders 0.4}
A second subtlety concerns the formula for the effective
dielectric constant of the array at long wavelengths. This is 0.2}
no longer given by Eq(77), but [19,2§ is given by the
Maxwell-Garnett formula in the dipole approximation:

2 ®
2f

(n2+nd)/(n2—n2)—f]|’

o

)

=

=
-

)
|
!
2_ 2 (106) X “Mm

nh:nb 1+

FIG. 9. (a) isofrequency contours for the lowest band of the
where f=7r2/d?. Higher order formulas for this effective square array, in the case of the empty latti¢e.the corresponding
dielectric constant may be found by multipole methods. Notelensity of statesr(,=2).
that the derivation of Eq(106) involves the application of
Keller's theorem for two-dimensional composite materialsThe DOS for the acoustic band has been shown to be char-
[19,29,30, since the boundary conditions for TE polarization acterized by four numbers: an effective index for low fre-
involve reciprocal dielectric constants, whereas those cugiuenciesiwhich can be calculated from known expressions
tomary in electrostatics for the calculation of effective di-in the homogenization literaturetwo band curvatures for

electric constant involve the dielectric constants withoutthe pointX, and one for the poinM. Analytic knowledge
inversion. concerning these band curvatures would thus be of great

value.

The steep variation of the DOS between frequencies cor-
responding toX and M may well offer interesting design

We have seen that the mutual density of states provides taade-offs. NeaiX, the density of states is very high, but a
formal framework for the construction of the other density of single frequency corresponds to a wide range of wave vec-
states function$LDOS, SDOS, and DOSThe MDOS may tors. NearM, each frequency corresponds to a tight range of
be calculated conveniently as the response of a periodic arrayave vectors, and one has the advantage of operating just on
of cylinders to a phased array of sources, which requires onlthe low frequency side of an absolute band gap, but the den-
the evaluation of the field in one unit cell rather than for sity of states is not high.
multiple unit cells. Thus, it may also be viewed as providing Additional insights may well flow from the study of den-

a computational factorization for the calculation of density ofsities of states for higher bands and for geometries of photo-
states functions, well adapted to an efficient implementatiomic crystals other than the single case studied here.
on parallel computers.

The analytic connections we have exhibited between the
form of mode surfaces for two-dimensional systems and the
variation with frequency of the density of states seem pow- The support of the Australian Research Council for the
erful and interesting for applications of photonic crystals.Centre of Excellence for Ultrahigh-bandwidth Devices for
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APPENDIX: THE EMPTY LATTICE

The simplest exemplification of the various density of

second integral in Eq(A5):

Lh(w)ny

’Ch(rS!w): ABZC

(AB)

states functions is provided in the case of the empty lattic§ance from Eq(36), the density of states for baritis

where we putn.=n,=n,. Using Egs.(1) and (4), we see

that
elQn (r=r9
Gu(r.IsiwKo)= % 25 . (A1)
From Egs.(14) and(21), we see that
c
M(rs,w,k0)=; 5@—%), (A2)
h

which is in keeping with the normalized wave function

eiQh-l’
Ip(r)= ——. (A3)
NhVAwWsc
We can use EqA2) to get the SDOS,
c
S(ko,w)=2, 5(0)—&). (A4)
h Ny
The LDOS is
1 C
L(rg,0)=—| d%ko>, 5(&)—&)
ABz BZ h Ny

Mh 2 ( _nh_“’)
fBZd kog 3 Qu=—c|- (A5

~ AgsC

We split this up into its contributions from each bamdand

Np
Ag,C

Lh(w) .
(A7)

1 2
M) =3[ et i wpdr-

As asserted, the DOS and the LDOS agree for a uniform
dielectric. Further, to check E¢44),

n
f Np(w)dw= “f Ly(w)do=1, (A8)
bandh AgzC Jbandn

since the second integral has the valgc/ny,.
As a specific example, for the lowest or acoustic band,
and for the square array of periakl

2mNL C
Lo((l)): C y for o< d_nh
_4 T 5 -1 C Npw A9
B 2 cos nhwd C ( )

for wrc/(dny)<w=+27c/(dn,). Hence,

Awscnﬁw TC
No(w): 27702 s for a)\d—nh
A 20 4 7C
_ Dwsdlh® 1- ——cos?! (A10)
27¢? ™ Nhod

for 7rc/(dn,) <w<\2mc/(dny). Isofrequency contours and

define the length of the isofrequency contour in the Brillouinthe DOS for this case are shown in Fig. 9.
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