
PHYSICAL REVIEW E 69, 016609 ~2004!
Density of states functions for photonic crystals
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We discuss density of states functions for photonic crystals, in the context of the two-dimensional problem
for arrays of cylinders of arbitrary cross section. We introduce the mutual density of states~MDOS!, and show
that this function can be used to calculate both the local density of states~LDOS!, which gives position
information for emission of radiation from photonic crystals, and the spectral density of states~SDOS!, which
gives angular information. We establish the connection between MDOS, LDOS, SDOS and the conventional
density of states, which depends only on frequency. We relate all four functions to the band structure and
propagating states within the crystal, and give numerical examples of the relation between band structure and
density of states functions.
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I. INTRODUCTION

The electromagnetic properties of photonic crystals n
constitute an intensive area of theoretical, numerical, and
perimental effort@1#. The two earliest papers on this top
@2,3# both highlighted the ability of the photonic crystal
modify the emission or absorption properties of an atom
molecule placed within it, through differences in the dens
of states within the crystal from its free space value. Giv
the remarkable progress in the last decade in the fabrica
of photonic crystals, we are now at the stage where dev
such as microlasers@4# are being fabricated. Optimal desig
of devices relying on the emission and absorption proper
of atoms within photonic crystals will require full characte
ization of density of state functions within them.

In its turn the density of states can be effectively dedu
from the knowledge of the Green function of the correspo
ing problem@5#. Therefore the knowledge of the Green fun
tion is essential for the complete characterization of the
diating properties of the system. Note that the Green func
and the Green’s function method are one of the central
ments in solid state physics@6#. The dynamic lattice Green
functions are discussed in Refs.@7,8#, while the static lattice
Green function is considered in Ref.@9#. In contrast to the
Green functions defined in these references, here we
phased or quasiperiodic Green functions, in which the sou
acquires an additional phase shift in moving from one u
cell to the other. This phased array of sources has been
earlier to model surface acoustic wave devices@10#. Below
we show that these quasiperiodic Green functions con
comprehensive information about the emitting properties
sources embedded in periodic arrays and give rise to di
ent density of states functions.

It is our purpose here to present a unified treatment of
classical electromagnetic calculation of density of sta
functions within photonic crystals. We stress at the out
that the density of states, as used in Fermi’s Golden r
arises from a semiclassical treatment of radiation by ato
in which the atom is treated quantum mechanically, wher
the electromagnetic fields with which it interacts can
1063-651X/2004/69~1!/016609~16!/$22.50 69 0166
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treated classically. We choose to consider the tw
dimensional case, where we have line absorbers or emi
of infinite length embedded in an array of cylinders of in
nite length. This has the effect of simplifying the theoretic
development, for example, in permitting it to be carried o
through the calculation of a single scalar field compon
rather than requiring a full vector treatment, but the essen
features of our treatment carry over to point sources in
array of cylinders or in a lattice of spheres.

The environment of this photonic crystal influences t
ability of atoms to emit and absorb radiation of a particu
frequency. This influence is a function of position in th
crystal, and also depends on the angular distribution of
radiation being emitted or absorbed. The dependence on
source position vectorr s is encapsulated in the local densi
of states~LDOS!, which is a function of frequencyv andr s ,
while the angular distribution is encapsulated in the spec
density of states~SDOS!, depending onv and the wave vec-
tor k0. These two functions are much more informative th
the density of states~DOS!, which is a function ofv alone,
but in many situations one may wish to combine both po
tional and angular information for radiation problems in ph
tonic crystals. This is achieved by calculating the mutu
density of states~MDOS!, depending onv, r s , and k0,
which we introduce here. We show that the MDO
M(r s ,v,k0) is a positive function, whose integral over th
Brillouin zone ~BZ! gives the LDOS, while its~weighted!
integral over the Wigner-Seitz cell~WSC! gives the SDOS.
If it is integrated over both cells, the result is the DOS. W
study the density of states functions using Green’s functio
and also using the basis of Bloch functions, which provide
convenient tool for establishing formally the links betwe
the various functions. We show that the LDOS and SDOS
independent functions, not being a Fourier transform pair,
example, and that neither incorporates all the informat
present in the MDOS. We also emphasize the connection
the four density of state functions with the band structure
the photonic crystal, and discuss their dependence on p
ization. The density of state functions and their relationsh
©2004 The American Physical Society09-1
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FIG. 1. Relationship between the various Green’s functions and density of states functions, with relevant equation number
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with each other and with Green functions are shown in F
1.

For a previous discussion of LDOS, SDOS, and DOS,
the review paper by Lagendijk and van Tiggelen@11#. This
emphasizes the similarities and differences between quan
mechanical treatments of electrons in structured mate
and the electromagnetic problem, but is oriented more
wards random distributions of scatterers than the orde
case of the photonic crystal considered here. The definit
of some density of state functions have not yet become fi
by wide usage. However, the DOS is clearly defined, a
subject to a normalization condition. We choose our norm
izations for the LDOS and SDOS to ensure they reduce
the DOS when they are functions of frequency alone~i.e.,
they are independent ofr s andk0, respectively!.

In the following section, we define the quasiperiod
Green’s function, and express it in terms of the compl
basis of Bloch functions. We then proceed to the definition
the mutual density of states, and its connections with
other density of states functions shown in Fig. 1. In the f
lowing section, we use Green’s theorem to relate the gr
velocity, energy density, and flux of Bloch modes in photo
crystals. We next explore methods for numerical calculat
of band structures and density of state functions in photo
crystals. While the bulk of this paper is concerned with T
polarization, we indicate concisely in Sec. VI how the k
01660
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results should be changed for TE polarization, before mak
concluding remarks.

II. GREEN’S FUNCTIONS AND THE BLOCH BASIS

We consider a two-dimensional periodic function descr
ing a real but otherwise arbitrary refractive index distributi
n(r ). We define the quasiperiodic Green function that obe
the equation

¹2GM~r ,r s ;v,k0!1
v2

c2
n2~r !GM~r ,r s ;v,k0!

5 (
p52`

`

d~r2r s2Rp!eik0•Rp. ~1!

together with appropriate conditions for that polarization
the cylinder boundary. Here, ifp denotes the integer pai
n,m, Rp5ne11me2, wheree1 , e2 are the basis vectors o
the array, which has a unit cell of areaAWSC and a Brillouin
zone of areaABZ . Also, the functionn(r ) is periodic in
position, as is its square,«(r ). Note that the vectork0 de-
fines the quasiperiodicity or Bloch property of the Gree
function, either in terms of the field vectorr ,

GM~r1Rp ,r s ,v,k0!5GM~r ,r s ;v,k0!eik0•Rp, ~2!
9-2
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or in terms of the vectorr s specifying the position of the
source in the central unit cell:

GM~r ,r s1Rp ,v,k0!5GM~r ,r s ;v,k0!e2 ik0•Rp. ~3!

We recall at this point two forms of the Poisson summ
tion formula @12#

AWSC(
p

d~r2r s2Rp!eik0•Rp5(
h

eiQh•(r2rs), ~4!

giving the plane wave representation of a sum of po
sources, and its reciprocal form

ABZ(
h

d~k2Qh!5(
p

eiRp•(k2k0). ~5!

In Eq. ~4!, Qh5Kh1k0 runs over plane waves with the co
rect quasiperiodicity (Kh specifying the set of all reciproca
lattice vectors!. Thus, we can rewrite~1! with its source term
as a sum of plane waves:

¹2GM~r ,r s ;v,k0!1
v2

c2
n2~r !GM~r ,r s ;v,k0!

5
1

AWSC
(

h
eiQh•(r2rs). ~6!

To be definite, we will considerEi or TM polarization, so
that GM refers to thez component of the electric field, with
GM and its normal derivative]GM /]n being continuous a
interfaces. ForH i polarization,GM and (1/«)]GM /]n are
continuous.

Equations~1! and~6! define an inhomogeneous or sour
problem. We can also consider the homogeneous prob
whose solutions are the Bloch functions or photonic mo
for the array:

¹2cm~k0 ,r !1
vm

2

c2
n2~r !cm~k0 ,r !50, ~7!

together with the boundary conditions on the cylinder (cm ,
]cm /]n continuous! and the quasiperiodicity condition

cm~k0 ,r1Rp!5cm~k0 ,r !eik0•Rp. ~8!

Note that the frequency for themth mode is determined by
the differential equation~7!, the quasiperiodicity condition
~8! and the boundary conditions, so thatvm5vm(k0).

The functionscm(k0 ,r ) are orthogonal with respect to th
inner product

^c l ,cm&5E
WSC

«~r !c l~k0 ,r !cm* ~k0 ,r !d2r , ~9!

as is readily proved using Green’s theorem. We will assu
that the set of Bloch functions for a fixedk0 form a com-
plete, normalized basis of functions. Some relevant prop
ties and references to previous relevant work may be fo
in the paper by Allaire, Conca, and Vanninathan@13#. For
01660
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example, we can expand any quasiperiodic solutionf (k0 ,r )
of the Helmholtz equation in terms ofcm as

f ~k0 ,r !5(
l

clc l~k0 ,r !, ~10!

where from Eq.~9!,

cl5E
WSC

«~r ! f ~k0 ,r !c l* ~k0 ,r !d2r . ~11!

Applying Eqs.~10! and~11! to the right-hand side of Eq.~1!,
we obtain

(
p52`

`

d~r2r s2Rp!eik0•Rp5(
l

n2~r s!c l* ~k0 ,r s!c l~k0 ,r !.

~12!

The asymmetry in Eq.~12! betweenr and r s is misleading,
since the left- and right-hand sides are only nonzero ir
5r s1Rp , which guarantees thatn2(r )5n2(r s). Using the
expansion~12! on the right-hand side of Eq.~1!, we can
obtain the expansion of the Green’s functionGM in terms of
the Bloch functionsc l(k0 ,r ) as

GM~r ,r s ;v,k0!5(
l

n2~r s!c l* ~k0 ,r s!c l~k0 ,r !

n2~r !@v22v l
2~k0!#/c2

. ~13!

Using the Plemelj formula

1

x2x01 ih
5P

1

x2x0
2 ipd~x2x0!, ~14!

we arrive at

GM~r ,r s ;v,k0!

5PGM2
ipc2n2~r s!

2vn2~r !
(
m

cm* ~k0 ,r s!cm~k0 ,r !

3d„v2vm~k0 ,r !…. ~15!

Here, P denotes the Cauchy principal value. Note that, w
r5r s , the second term on the right-hand side of Eq.~15! is
purely imaginary since the productcc* then becomesucu2.
So the two terms on the right-hand side of Eq.~15! then
correspond to real and imaginary parts, respectively.

III. DENSITY OF STATES FUNCTIONS

One way to calculate density of states functions~see the
left side of Fig. 1! is through the imaginary part of th
Green’s function, evaluated when the field point coincid
with the source point~under those circumstances, of cours
the real part becomes singular!. For example, we can con
struct the LDOS L(r s ;v) from a Green’s function
G(r ,r s ;v) which corresponds to a single source, rather th
the quasiperiodic superposition of sources evident in Eq.~1!:
9-3
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¹2G~r ,r s ;v!1
v2

c2
n2~r !G~r ,r s ;v!5d~r2r s!. ~16!

Given G, L follows from the definition@8#

L~r s ;v!52
2v

pc2
Im @G~r s ,r s ;v!# U, ~17!

whereU is the normalization factor,

U5E
WSC

«~r s!d
2r s , ~18!

corresponding to the dielectric constant integrated over
Wigner-Seitz cell.

We will now establish the relationship betweenGM andG
shown in Fig. 1. The integral of the Bloch factor occurrin
on the right-hand side of Eq.~1! over the Brillouin zone is
zero unless the lattice vectorRp is zero:

1

ABZ
E

BZ
exp~ ik0•Rp!d2k05dp,0 , ~19!

where ABZ is the area of the Brillouin zone. Hence,G is
obtained fromGM by integration

G~r ,r s ;v!5
1

ABZ
E

BZ
GM~r ,r s ;v,k0!d2k0 . ~20!

We can now define the mutual density of states by an
ogy with the local density of states~17!:

M~r s ,v,k0!52
2v

pc2
Im @GM~r s ,r s ,v,k0!# U

5(
m

d„v2vm~k0!…ucm~k0 ,r s!u2 U,

~21!

where the summation goes over all modesm of the photonic
crystal andcm(k0 ,r s) is the eigenfunction normalized ac
cording to

E
WSC

«~r s!ucm~k0 ,r s!u2d2r s51. ~22!

Thus, the MDOS is a non-negative function, which is zero
any band gap, i.e., in any range ofv in which there are no
propagating modes of frequencyvm(k0).

In keeping with Eq.~20!, we integrate Eq.~21! over the
Brillouin zone:

1

ABZ
E

BZ
M~r s ,v,k0!d2k0

52
2vU

ABZpc2EBZ
d2k0ImGM~r s ,r s ,v,k0! ~23!
01660
e
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or, using Eq.~17!,

1

ABZ
E

BZ
M~r s ,v,k0!d2k0

52
2vU
pc2

ImG~r s ,r s ,v!5L~r s ,v!. ~24!

Thus, the LDOS follows from the MDOS by integration ov
the Brillouin zone:

L~r s ,v!5
U

ABZ
(
m

E
BZ

d2k0d„v2vm~k0!…ucm~k0 ,r s!u2.

~25!

From Eq. ~25!, we see that the LDOS obeys the sam
boundary conditions as the functionsc , i.e., both this and its
normal derivative are continuous across cylinder boundar
It is a non-negative function throughout the Wigner-Se
cell, and is periodic. However, it does not obey the Hel
holtz equation. In fact, it satisfies

F¹212
v2

c2
n2~r !GL~r s ,v!

5
2U
ABZ

(
m

E
BZ

d~v2vm!“cm~k0 ,r s!

•“cm* ~k0 ,r s!d
2k0 , ~26!

wherevm5vm(k0). The interpretation of Eq.~26! is that the
source of the LDOS is the combined electromagnetic ene
density of all propagating modes.

Another physical interpretation of the LDOS can be d
duced from Green’s theorem applied to the unit cell conta
ing the primary source

E E ~G¹2G* 2G* ¹2G!dA

5S E
G

2E
C
D S G

]G*

]n
2G

]G*

]n Dds. ~27!

Taking the source to be in the exterior regionU1 of Fig. 2,
the left-hand side of Eq.~27! reduces to 2i Im@GM(r s ,r s)#.
The contour integral aroundC on the right-hand side of Eq
~27! can be shown to vanish for lossless media after apply
the continuity conditions onC and again applying Green’
theorem to the interior regionU2 . Thus

2i Im@G~r s ,r s ,v!#5E
G
S G

]G*

]n
2G

]G*

]n Dds. ~28!

The integral on the right-hand side of Eq.~28! is proportional
to the outgoing flux throughG due to the source and w
deduce

2i Im@G~r s ,r s ,v!#522kZ0F, ~29!
9-4
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FIG. 2. The geometry for the
application of Green’s theorem. A
cylinder of radiusr 5a has a con-
tour C2 just inside its surface and
C1 just outside. The unit cell has
bounding contourG, and areaU,
divided byC into U2 andU1 .
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whereF is the outgoing flux andZ0 is the impedance of free
space. Thus, the energy that can be extracted from the so
depends directly on the available density of modes given
the MDOS:

L~r s ,v!52
2v

pc2
Im@GM~r s ,r s ,v!#5

4k2m0

p
F. ~30!

We now move to the right-hand side of Fig. 1, and in
grate~21! over the WSC:

1

UEWSC
«~r s!M~r s ,v,k0!d2r s

5(
m

d„v2vm~k0!…E
WSC

«~r s!ucm~k0 ,r s!u2d2r s .

~31!

Hence,

1

UEWSC
d2r s«~r s!M~r s ,v,k0!5(

m
d„v2vm~k0!…

5S~v,k0!. ~32!

This result is the spectral DOSS(v,k0), which is a function
of frequency and position in the Brillouin zone incorporati
the information contained in the complete photonic band d
gram for the structure in question.

We now relate the SDOS to the Dyson Green funct
@11,7# GD(v,k0). From Eq.~13!,
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GM~r s ,r s ;v,k0!5(
l

c2uc l~k0 ,r s!u2

@v22v l
2~k0!#

. ~33!

Hence, using the normalization condition~22!

1

UEWSC
GM~r s ,r s ;v,k0!«~r s!d

2r s

5
c2

U (
m

1

@v22vm
2 ~k0!#

5GD~v,k0!. ~34!

From the Plemelj formula~14!, we arrive at the equation fo
the SDOS analogous to the definition~17! of the LDOS:

S~v,k0!5
22vU

pc2
ImGD~v,k0!. ~35!

Comparing~32! and~25!, we see that the SDOS is dete
mined entirely by the dispersion equation for the bands,
by their shape, with any position information having be
integrated out. The LDOS is determined from the squa
magnitudes of the modes, integrated over the isofreque
contoursC(vm), representing the curves following the ve
tors k0 for which modem has the specified frequency—i.e
v5vm(k0). Thus, the LDOS combines information con
cerning both the band shape and the form of the modes,
it has lost information about directional dependence throu
the integration over the Brillouin zone.

The total density of states is defined as
9-5
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N~v!5
1

UEWSC
«~r s!L~r s ,v!d2r s . ~36!

After substitution of Eqs.~21! and~24! into Eq.~36! and use
of the normalization condition~22!, we obtain

N~v!5(
m

1

ABZ
E

BZ
d„v2vm~k0!…d2k0

5
1

ABZ
E

BZ
S~v,k0!d2k0 . ~37!

Thus, we have established the two paths to the densit
statesN(v) shown in Fig. 1.

Now we expand in a Taylor series in the vicinity of th
isofrequency contour@i.e., the unconstrained vectork0 is
close to the vectork0(vm) lying on the isofrequency con
tour# to give

v2vm~k0!5“k0
v•@k02k0~vm!#1O„uk02k0~vm!u2….

~38!

After substitution of this equation into Eq.~37! and use of
the propertyd(ax)5d(x)/uau we find

N~v!5(
m

1

ABZ
E

BZ

1

vg
d„û•@k02k0~vm!#…d2k0 , ~39!

wherevg5u“k0
vu is the group velocity andû represents the

unit vector in the direction of“k0
v ~that is, the direction

normal to the isofrequency lines!. To carry out the integra-
tion over the Brillouin zone, we expressk0 as k0
5(k0t ,k0n), wherek0t is the projection ofk0 onto the tan-
gent to an isofrequency line, whilek0n5k0•û. In terms of
these new variables Eq.~39! takes the form

N~v!5(
m

1

ABZ
E

BZ

1

vg
d„kn2k0,n~vm!…dk0tdk0n. ~40!

The integration with respect tokn ~in the direction normal to
the isofrequency lines! can be done in closed form using th
d function and we obtain

N~v!5(
m

1

ABZ
E

C(vm)

1

vg
dk0t , ~41!

whereC(vm) is the isofrequency linev5vm . This expres-
sion for the density of states agrees with that found in st
dard texts@14#.

Equation~25! can be treated in a similar fashion, to giv

L~r s ,v!5U(
m

1

ABZ
E

C(vm)

ucm~k0 ,r s!u2

vg
dk0t . ~42!

Of course, if we substitute Eq.~42! into Eq.~36! and use the
normalization condition~22!, we return to the expressio
~41!.
01660
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We can also integrate Eq.~26! over the Wigner-Seitz cell.
The term involving the Laplacian integrates to zero beca
of the periodicity ofL(r s ,v), and the other two terms ar
both proportional to the density of statesN(v). The result is
an alternate way of expressing the normalization condit
~22!:

E
WSC

“cm~k0 ,r s!•“cm* ~k0 ,r s!d
2r s5

vm
2

c2
. ~43!

We define the photonic bandm as the surface for modem
defined by the single-valued functionvm(k0) ask0 runs over
the Brillouin zone. We note that the single-valued nature
the mode dispersion relation is guaranteed since the phot
band cannot have folds, and this in turn follows from t
necessity for the group velocity to remain finite. Of cours
as the frequency increases, so does the tendency to
band surfaces which pass through each other. However
absence of folds means we can always disentangle inter
ing bands. Then, from Eq.~37!,

E
band m

N~v!dv5
1

ABZ
E

BZ
d2k0E

band m
d„v2vm~k0!…dv

5
1

ABZ
E

BZ
d2k051. ~44!

Each band thus contributes one state to the integrated D
completing Fig. 1.

In the Appendix, we illustrate these results by calculati
the various density of states functions for the case of perio
boundary conditions, but with a uniform refractive inde
~i.e., nc5nb). There the effect of the normalization factorU
can be seen, in that the LDOS and DOS coincide.

We note that, from Eq.~21!, the functionM is periodic in
bothk0 andr , as well as being real valued and non-negati
It follows that it, and equally well«M, can be expanded in
series involving both the reciprocalKh and direct basesRp :

«~r s!M~r s ,v,k0!5(
p,h

mp,hei (Kh•rs1k0•Rp), ~45!

where mp,h are appropriate expansion coefficients. Hen
we see that

«~r s!L~r s ,v!5
1

ABZ
E

BZ
(
p,h

mp,hei (Kh•rs)ei (k0•Rp)d2k0 ,

~46!

and, using Eq.~19!, we find the following Fourier series in
reciprocal space:

«~r s!L~r s ,v!5(
h

m0,hei (Kh•rs). ~47!

For the spectral density of states, we use Eq.~32!,

S~v,k0!5
1

UEWSC
«~r s!M~r s ,v,k0!d2r s . ~48!
9-6
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Using Eq.~45! in Eq. ~48!, we find the following Fourier
series in direct space:

S~v,k0!5
AWSC

U (
p

mp,0e
ik0•Rp. ~49!

Hence,

N~v!5
AWSC

U m0,0. ~50!

Note that the Fourier series for the local DOS~47! and the
spectral DOS~49! involve disjunct sets of the Fourier coe
ficients ofM, with the only element in common~the m0,0
term! determining the density of states.

IV. ENERGY, FLUX, AND GROUP VELOCITY

We now specialize to the case where the inclusions
circular cylinders of refractive indexnc in a matrix or back-
ground material of indexnb , as in Fig. 2. Given a modecm
found from the homogeneous problem~7! and ~8!, we need
to normalize it to give

Nm5^cm ,cm&5E
WSC

«~r !cm~k0 ,r !cm* ~k0 ,r !d2r51.

~51!

Rather than achieve this through numerical evaluation o
double integral, we can use Green’s theorem to obtain
normalization in terms of a sum over expansion coefficie
of the homogeneous solution. The analysis also will lead
to a useful relationship linking the energy flux carried by
mode through a boundary of the unit cell to its energy a
group velocity.

We apply Green’s theorem to a pair of modescm , cm8 ,
corresponding to the same quasiperiodicity vectork0, but to
cylinders of refractive indexnc , nc8 , respectively. The dif-
ference in indexnc82nc5dn is associated with a differenc
in frequencydv5vm8 2vm . Then

E
U

~cm8 * ¹2cm2cm¹2c8m* !dA

5E
G
S c8m*

]cm

]n
2cm

]c8m*

]n Ddl

1E
C2

Fc8m*
]cm

]n
2cm

]c8m*

]n G
r 5a

adu

2E
C1

Fc8m*
]cm

]n
2cm

]c8m*

]n G
r 5a

adu. ~52!

The integrals overC1 andC2 cancel through the boundar
conditions, while the integral overG gives zero because o
the quasiperiodicity conditions common tocm and cm8 .
Hence,
01660
re

a
e
s
s

d

~vm8
22vm

2 !

c2 E
U1

cmc8m* dA

1
~nc8

2vm8
22nc

2vm
2 !

c2 E
U2

cmc8m* dA50. ~53!

We write

vm8 5vm1
]vm

]nc
dn1•••, ~54!

and expand both terms in Eq.~53! to first order indn. After
some algebra, we find

N5E
U1

ucmu2dA1nc
2E

U2

ucmu2dA

5
2ncvm

]vm /]nc
E

U2

ucmu2dA. ~55!

From Eq.~55!, we see that]vm /]nc,0: increasing the cyl-
inder index lowers the frequency of the photonic crys
bands, forEi polarization, as would be expected on physic
grounds.

Consider now

N25nc
2E

U2

ucmu2dA. ~56!

We evaluate this using Green’s theorem once more. If
consider the particular case where the cylinders have circ
cross sections, we can use the expansions

cm5(
l

Cl
mJl~nckr !eil u ~57!

and

cm8 5(
l

Cl
m8Jl~nc8kr !eil u, ~58!

to give using a first-order analysis

N25
22pakncc

2

2vm~vm1nc]vm /]nc!
(

l
uCm

l u2Jl~ncka!Jl8~ncka!.

~59!

Combining Eq.~55! and ~59!, we find

N5
pakc2

~]vm /]nc!~vm1nc]vm /]nc!

3(
l

uCm
l u2Jl~ncka!Jl8~ncka!. ~60!

Consider next the case wherevm andvm8 differ because
of a difference in thex componentk0x of k0. Then from
Green’s theorem
9-7
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vm8
22vm

2

c2 E
U

n2~r !cmcm8* dA5E
G
S cm8*

]cm

]n
2cm

]cm8*

]n Ddl.

~61!

Expanding the left-hand side to leading order, we find

2vm

c2

]vm

]k0x
dk0xN5E

G
S cm8*

]cm

]n
2cm

]cm8*

]n Ddl1••• .

~62!

For the right-hand side, the integrals overy52d/2 and y
5d/2 cancel by the common quasiperiodicity ofcm andcm8 .
Using the Bloch factors corresponding tok0x and k0x8 , we
obtain for the other two sides

@ei (k0x2k0x8 )d21#E
y52d/2

d/2 S cm8*
]cm

]n
2cm

]cm8*

]n D
x52d/2

dy

52 idk0xdE
y52d/2

d/2 S cm8*
]cm

]n
2cm

]cm8*

]n D
x52d/2

dy

1••• . ~63!

Hence, equating coefficients ofdk0x ,

vm

]vm

]k0x
N5c2dImF E

y52d/2

d/2 Fcm*
]cm

]x G
x52d/2

dyG . ~64!

We interpret Eq.~64! in terms of electromagnetic energ
fluxes if we evaluate the electric and magnetic fields ass
ated withcm , respectively,

E5~0,0,cm! ~65!

and

H5
ic2

vm
S 2

]cm

]y
,
]cm

]x
,0D . ~66!

Hence, the Poynting vector associated with this mode is

S5
c2

vm
Im~cm*“cm!. ~67!

Accordingly, the flux of energy through the side of the u
cell at x52d/2 is

Fx5
c2

vm
ImF E

2d/2

d/2 Fcm*
]cm

]x G
x52d/2

dyG . ~68!

The result is that Eq.~64! becomes

]vm

]k0x
N5dFx , ~69!

or, in vector form, adding in the corresponding result fo
perturbation ofk0y ,
01660
i-

t

vg

N
d2

5
F
d

. ~70!

This result on the left-hand side is the product of the gro
velocity and the energy density of the mode. On the rig
hand side we have the vectorial flux density associated w
the mode. If we normalize the mode so thatN51, then Eq.
~70! takes the simple form thatvg5dF.

V. METHODS FOR CALCULATING DENSITY
OF STATE FUNCTIONS

A. MDOS, mode, and group velocity surfaces

We start with the MDOS, which follows from Eq.~21!
once the Green’s functionGM is known. The calculation of
GM has been discussed by Poultonet al. @15#, and we sum-
marize the method here for TM polarization. It relies o
multipole expansions forGM inside the central cylinder~la-
beled with a superscript 0!,

GM ,int~r ,u!5 (
m52`

`

Cm
0 Jm~nckr !eimu, ~71!

and outside cylinder 0,

GM ,ext~r ,u!5 (
m52`

`

@Am
0 Jm~nbkr !1Bm

0 Ym~nbkr !#eimu.

~72!

The multipole coefficients for thepth cylinder follow from
those for the central cylinder using Eq.~2!:

Bm
p 5Bm

0 eik0•Rp. ~73!

The boundary conditions at the cylinder surface enable
multipole coefficientsCm

0 andAm
0 to be expressed in terms o

Bm
0 , and, in particular,

Am
0 52MmBm

0 , ~74!

Mm5
nbJm~nckrc!Ym8 ~nbkrc!2ncJm8 ~nckrc!Ym~nbkrc!

nbJm~nckrc!Jm8 ~nbkrc!2ncJm8 ~nckrc!Jm~nbkrc!
.

The multipole coefficients can be obtained by solving
set of linear equations~the Rayleigh identity!

MmBm
0 1(

,
~21!m1,S,2m

Y B,
0

5
1

4
Ym~kr0!e2 imu01

1

4 (
,

~21!m1,S,2m
Y J,~kr0!e2 i ,u0.

~75!

The two terms on the right-hand side arise, respectiv
from the source in the central unit cell and the sources in
other unit cells, reexpressed using Graf’s addition theor
The quantitiesS,

Y are sums over the array of cylindrical ha
monics phased by the Bloch factor. Once the coefficientsBm

0

9-8
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are obtained by solving a truncated set of Eqs.~75!, the value
of M can be obtained from Eq.~21! using the expansion
~72!, taking care to subtract the divergent contribution due
the source in the central unit cell.

A similar approach can be used to find photonic crys
modescm . In this case, the multipole coefficients resu
from a homogeneous system, there being no source ter
the Rayleigh identity:

MmBm
0 1(

,
~21!m1,S,2m

Y B,
050. ~76!

For a given value ofk0, the determinant of this identity ca
be calculated over a given range of values ofv; the zeros of
the determinant give the allowed values ofvm(k0). We can
perturb the values of the componentsk0x andk0y slightly to
obtain the corresponding components of the group velo
vg by numerical differentiation. By changing the cylind
index nc slightly, we can obtain]vm /]nc by numerical dif-
ferentiation, and thus evaluate the mode normalization fa
N from Eq.~60!. Knowingvg andN, we can use Eq.~70! to
evaluate the flux density associated with the mode.

In Fig. 3 we show both the variation ofv with Bloch
vector across the first Brillouin zone for the acoustic ba
and the variation of the magnitude of the group velocityuvgu
across the same region. Note that the acoustic band su
exhibits within the Brillouin zone one maximum, two sadd
points, and one minimum, in accord with general argume
given in Callaway @16#. The minimum is atG, entirely
within the Brillouin zone, and the mode surface there com
to a conical point, with slope given by the effective refracti
index of the mode~see below!. The two saddle points occu

FIG. 3. ~Color online! ~a! Surface showing the frequency of th
acoustic band as a function of the Bloch vector.~b! Surface showing
the magnitude of the group velocity divided byc of this mode as a
function of the Bloch vector. TM polarization,a50.3, nc53.0,
nb51, square array of unit period.
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at X and its three equivalent points, with each contributi
half of a saddle point to the Brillouin zone. The four corne
of the Brillouin zone each contribute one quarter of t
maximum to the Brillouin zone. Note that the group veloc
vanishes at bothX andM.

The sections of the group velocity surface shown in Fig
give the variation of the nonzero Cartesian components
this vector along the symmetry linesGX andXM. The value
of vg /c at G is 0.553 68, which agrees to all figures quot
with the reciprocal of the homogenized refractive index
this polarization~see below!. The nonzero Cartesian compo
nent ofvg can be seen to change sign at bothX andM.

B. SDOS, LDOS, and DOS

To evaluate the SDOS, LDOS, and DOS we can div
the irreducible part of the Brillouin zone into a grid of value
k0. For each of these, we calculate the values for eachvm ,
and place them in an array which records those modes ly
in specified frequency ranges. Appropriately normalized, t
array gives the discretized spectral density functionS(v,k0).
The density of states functionN(v) results from combining
all entries for varyingk0 which lie in the specified frequenc
ranges. In order to calculate the functionL(r s ,v), we must
for each point in a grid covering the Wigner-Seitz cell, a
cording to Eq.~25!, accumulate the modulus squared val
of the normalized wave function~or wave functions, if more
than one corresponds to a given pair ofv and k0) for all
values ofk0 and for each frequency. This is the procedu
used by John and Busch@17# to calculate the LDOS at se

FIG. 4. Detail of Fig. 3 along the linesGX ~a! andXM ~b!.
9-9
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lected points in a three-dimensional lattice, and by Mo
@18# for the one-dimensional case.

A second, slightly different method is to take the fr
quency data corresponding to a grid of values filling t
Brillouin zone and to fit a smooth interpolating function to
This function then enables the construction of isofreque
contours and the group velocity~as shown in Fig. 3! by
numerical differentiation. The density of states can then
calculated using Eq.~41!, where of course we need onl
integrate over the segment of the isofrequency contour ly
within GXM, given the symmetry properties of the integra
evident from Fig. 3.

In Fig. 5 we show the DOS as a function of frequency
the first band of a square array of dielectric cylinders, w
the numerical results from either of the above metho
agreeing to better than graphical accuracy. There are t
regions evident. At low frequencies, the DOS is appro
mately a linear function of frequency, its slope being det
mined by the homogenized refractive indexnh , which for
this polarization is the result of the linear mixing formu
@19#:

nh
25

pr c
2nc

21~d22pr c
2!nb

2

d2
, ~77!

FIG. 5. ~Color online! DOS as calculated by numerical integr
tion for the square array, with the points giving the analytic e
mates based on Eq.~80!, the sloping straight line giving the low
frequency asymptote based on the effective index~77!, and the
horizontal straight line to Eq.~81!, for the data of Fig. 3.~a! Whole
of the acoustic band,~b! region nearX.
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d being the period of the array. In this region,

N0~v!;
AWSCnh

2v

2pc2
. ~78!

Beyond the linear region, the DOS increases sharply, in
diverging logarithmically@20#, before decreasing again an
dropping sharply to zero at the edge of the first band g
There are 1000 points on the curve, and the numerical tes
the relationship~44! gives the value 1.000 73 for the firs
band.

There is an interesting property suggested by Fig. 5. If
low frequency straight line is extrapolated toM, it passes
very close toN0(vM). This is a property which holds for the
phonon density of states for the square lattice in two dim
sions @8#. However, it does not hold in general for two
dimensional photonic crystals: we have verified numerica
that, if the cylinder radius of Fig. 5 is perturbed away fro
a50.3, the apparent coincidence of the low frequency mo
with N0(vM) is removed.

C. DOS and critical points

The behavior of the DOS near its logarithmic peak and
the edge of the band gap can be understood in terms
critical point analysis, well presented by Bassani and Pas
Parravicini @20#. Around critical points, the photonic band
have a frequency which varies with wave number in qu
dratic fashion, characterized by effective mass parameter
will denote by CX and CY . The logarithmic peak in fact
corresponds to a frequencyv0 which is the value ofv for
the first mode at the end of the segmentGX—i.e., k0
5(p/d,0). Themode surface has a saddle point atX, near
which point we approximate its form by

v5vX2
~DkX!2

2CX
1

~DkY!2

2CY
1•••, ~79!

whereDkX5k0x2p/d, DkY5k0y . We show in Fig. 6 the
variation of v along the symmetry linesGX and XM, to-
gether with least square fits to the dispersion relation to
left and right ofX. These give the numerical estimates atX:
CX51.431,CY58.566.

We display in Fig. 7 isofrequency contours across a qu
ter of the Brillouin zone. These are circular nearG, and
become more distorted with increasing frequency. A key f
ture is evident in Fig. 7, which explains the key difference
the contribution to the DOS of the saddle pointX from that
of the band maximumM: the length of the isofrequenc
contours nearX tends to a constant, whereas nearM it tends
to zero. Also given in Fig. 7 are two straight lines starting
X and Y, with respective slopes 2ACY /CX and
2ACX /CY, which indicate the local separators between
contours centerd onG and M.

The contribution from this point and the three equivale
points to the DOS is of the form@20#

N0~v!52
4

ABZ
ACXCY@ lnuv2vXu1C#, ~80!

-
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FIG. 6. ~Color online! ~a! frequency of the acoustic mode alon
the line GXM, with the sloping straight line corresponding to th
effective index of Eq.~77!. ~b! detail nearX, showing least square
fits according to Eq.~79!, which determineCX andCY at X, for the
data of Fig. 3.

FIG. 7. ~Color online! Isofrequency contours for the acoust
band, and straight lines giving local separators of contours neX
andY, for the data of Fig. 3.
01660
for C an additive constant. The comparison of Eq.~80! with
the numerical DOS curve shown in Fig. 3 uses the value
best fitC521.

The local density of states atvX is, from Eq.~42!, domi-
nated by the contribution fromuc0(X,r s)u2. As the frequency
sweeps through the value corresponding to a critical po
the LDOS becomes proportional toucu2 for that point. Thus,
as v increases fromvX to vM , the spatial pattern of the
LDOS evolves fromuc0(X,r s)u2 to uc0(M ,r s)u2.

The edge of the band gap occurs at the pointM, where
k05(p/d,p/d). This is a maximum of the band surface, a
this critical point gives a contribution

N0~v!5
CMd2

2p
, ~81!

i.e., we expect the DOS to flatten out at the band edge,
fore falling steeply to zero in the gap. Note that, for the po
M, by symmetryCX5CY5CM , with a least squares fit to
the data in Fig. 6 givingCM55.269. The result~81! is vali-
dated in Fig. 5.

Using Eq.~81!, the form of the mode surface nearM is

v5vM2
~DkxM

2 1DkyM
2 !d2

4pN0~vM !
1•••, ~82!

whereDkxM5k0x2p/d, DkyM5k0y2p/d.

D. LDOS

We next consider the local density of states for a spec
frequency value. To evaluate this we need to evaluate
integral ~42!. We have carried out this using a method
calculating flux-normalized Bloch functions@21#. To convert
from a Bloch function normalized with respect to~say! the
flux Fy along they axis to a mode normalized with respect
its electromagnetic energy@as in Eq.~22!#, we use Eq.~70!,
with the result that the integrand in Eq.~42! involves the
ratio vgy /vg rather than 1/vg . Note that it is sufficient to
carry out the integral along the isofrequency contour over
first quadrant only, by virtue of the symmetry of the squa
array and the circular inclusion. Figure 8 shows two views
the local density of states, as a function of position in the u
cell. Note that the LDOS strongly peaks in the cylinders, a
both its value and its normal derivative are continuous at
cylinder surface, as expected. We can numerically integ
the local density of states weighted by the dielectric cons
over the unit cell, to provide a test of Eq.~36!. For the
frequency of Fig. 8, the numerical integral gave 1.0472,
satisfactory agreement with the independent value~1.0455!.

E. Modes at symmetry points

The Rayleigh identity~76! takes an interesting specia
form at points such asX andM. Since the correspondingk0
has the property that this and2k0 are separated by a recip
rocal lattice vector, the lattice sumsS,

Y are equal at6k0.
Using also the symmetry properties of the square array,
find that the lattice sums are real andS2,21

Y 50 for all inte-
gersl. The Rayleigh identity then becomes
9-11
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MmBm
0 1(

n
S2n

Y Bm12n
0 50. ~83!

Equations~83! break into two separate families: the set w
even order multipole coefficients and the set with odd or
multipole coefficients. As the boundary condition termsMm
are real, the multipole coefficients in either case may
taken to be real, and they have the property thatB2m
5(21)mBm . The potential expansions for the even soluti
inside and outside the central cylinder are

c int~r ,u!5 (
m52`

`

«2mC2m
0 J2m~nckr !cos~2mu!, ~84!

cext~r ,u!5 (
m52`

`

«2m@A2m
0 J2m~nbkr !

1B2m
0 Y2m~nbkr !#cos~2mu!, ~85!

where«2m51 if m50 and 2 otherwise. All the coefficient
A, B, and C here are real, as is the functionc. The odd
solution is similar, except that 2m is replaced by 2m21.
However, this difference enables us to see that the odd s
tion must be zero at the center of the high index regi

FIG. 8. ~Color online! The local density of states for a squa
array of cylinders (a50.3d, nc53.0, l55.0d, TM polarization!.
01660
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while the even solution is nonzero there~given the coeffi-
cient B0 is nonzero!. We thus expect, as is in fact evide
from numerical results@22#, the even solution to correspon
to a lower frequency than the odd solution, with the form
giving a point on the acoustic band surface and the latte
point on the optical band surface.

The Bloch factor exp(ik0•Rp) for point X is exp(ippx),
whereRp5d(px ,py). Using this to connect the values ofc
in adjacent unit cells, we can deduce the following propert
of the even solution:

]ce~X;x,y!

]y
50 on y50,6d, . . . ,

y56d/2,63d/2, . . . ,

]ce~X;x,y!

]x
50 on x50,6d, . . . ,

ce~X;x,y!50 on x56d/2,63d/2, . . . ,

ce~X;x,y!5ce~X;x,2y!5ce~X;2x,y!5ce~X;2x,2y!

for ~x,y!P~WSC!. ~86!

The Bloch factor exp(ik0•Rp) for point M is expip(px
1py), whereRp5d(px ,py), so that for this value ofk0 we
obtain similar properties to Eq.~86! along lines at 45° to the
x andy axes.

The odd solution has the following properties atX:

]co~X;x,y!

]y
50 on y50,6d, . . . ,

y56d/2,63d/2, . . . ,

]c0~X;x,y!

]x
50 on x56d/2,63d/2, . . . ,

co~X;x,y!50 on x50,6d, . . . ,

co~X;x,y!5co~X;x,2y!

52co~X;2x,y!

52co~X;2x,2y! for ~x,y!P~WSC!.

~87!

The symmetry conditions~86! and ~87! ensure that for both
the even and odd modes the energy flux densityc* ]c/]n
vanishes at each point on the boundary of the Wigner-S
cell.

There is an interesting special case for TM polarization
which an analytic solution may be found for the lowest ba
nearG, which does not give a band surface with the coni
form of Fig. 2. This case is that of the square array of p
fectly conducting cylinders, which has been studied by
number of authors@23–26#. The dispersion equation for th
acoustic band is
9-12
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v5vG1
~Dk0!2c2

2vG
1•••, ~88!

where, because we are expanding aboutG, Dk05k0 and

vG
25

2pc2

d2 F ln
r c

d
1CG21

1•••, ~89!

with C51.310 532 92@25# for the square array. This ban
then has a minimum atG, which marks the top edge of
band gap starting atv50. The form of Eq.~82! for this band
minimum is

v5vG1
~Dk0!2d2

4pN0~vG!
1•••, ~90!

and so

N0~vG!5
vGd2

2pc2
1•••. ~91!

Thus, in this particular case, we have an analytic estim
giving the density of states at the top edge of the first gap
terms of the frequency there, with that frequency also be
determined analytically by Eq.~89!. As r c→0, bothvG and
N0(vG) tend to zero slowly, as the square root of the inve
of the logarithm.

VI. TE POLARIZATION

We give here the necessary changes to the key form
of Secs. II and III for the case of TE polarization. We deno
the Bloch modes for this polarization byCm(k0 ,r ), and we
require at the cylinder boundaries thatC and (1/«)]C/]n be
continuous. The appropriate form of the Helmholtz equati
true in the sense of distributions, is then@27#

“•S 1

n2~r !
“Cm~k0 ,r !D 1

vm
2

c2
Cm~k0 ,r !50. ~92!

This then results in the inner product form replacing Eq.~9!,

^C l ,Cm&H5E
WSC

C l~k0 ,r !Cm* ~k0 ,r !d2r . ~93!

Hence, the appropriate expansion forGM is now

GM~r ,r s ;v,k0!5(
l

C l* ~k0 ,r s!C l~k0 ,r !

@v22v l
2~k0!#/c2

. ~94!

The other key equations follow, generally, by omitting t
weighting factor of the dielectric constant which occurred
TM polarization:

LH~r s ;v!52
2v

pc2
Im@G~r s ,r s ;v!# UH , ~95!
01660
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where G and GM are related by Eq.~20! and where the
normalization factor is now very simple:

UH5E
WSC

d2r s5AWSC. ~96!

The mutual density of states for this polarization is

MH~r s ,v,k0!52
2v

pc2
Im[GM~r s ,r s ,v,k0# UH

5(
m

d„v2vm~k0!…uCm~k0 ,r s!u2 UH .

~97!

The local density of states is now

LH~r s ,v!5
UH

ABZ
(
m

E
BZ

d2k0d„v2vm~k0!…uCm~k0 ,r s!u2,

~98!

where this function and 1/«(r ) times its normal derivative
are continuous across interfaces. It obeys the govern
equation

“•F 1

n2~r !
“LH~r s ,v!G12

v2

c2
LH~r s ,v!

5
2U H

n2~r !ABZ
(
m

E
BZ

d~v2vm!

3“Cm~k0 ,r s!•“Cm* ~k0 ,r s!d
2k0 , ~99!

wherevm5vm(k0). The spectral density of states is

1

UH
E

WSC
MH~r s ,v,k0!d2r s5(

m
d„v2vm~k0!…

5SH~k0 ,v!, ~100!

and is connected to the Dyson Green function again:

SH~k0 ,v!5
22vU H

pc2
Im@GD~v,k0!#

5
22v

p
Im(

m

1

@v22vm
2 ~k0!#

. ~101!

The total density of states is

N~v!5
1

UH
E

WSC
LH~r s ,v!d2r s5

1

ABZ
E

BZ
S~k0 ,v!d2k0 .

~102!

Its integral form over isofrequency lines is once again giv
by Eq. ~41!, while the corresponding integral for the LDO
is
9-13



q
o

en

t
o-

iv

ot

als
n
u
i-
u

es
o

rr
n
or
ng
o

tio

th
th
w
ls

har-
e-
ns

reat

or-

a
ec-
of
t on
en-

-
oto-

he
or

he

McPHEDRAN et al. PHYSICAL REVIEW E 69, 016609 ~2004!
LH~r s ,v!5UH(
m

1

ABZ
E

C(vm)

uCm~k0 ,r s!u2

vg
dk0t .

~103!

With these results, the necessary changes to other e
tions in Secs. III, IV, and V are obvious, with perhaps tw
exceptions. The first is the derivation of the result equival
to Eq. ~55!,

NH5E
U1

uCmu2dA1E
U2

uCmu2dA

5
2vm

nc]vm /]nc
F E

U2

uCmu2dA1
c2

vm
2 nc

2EC2

Cm

]Cm*

]n
dlG .

~104!

Using Green’s first formula, this can be written as

S ]vm

]nc
DNH52

vm

nc
E

U2

“Cm•“Cm* dA. ~105!

Once again, we can conclude that the effect of increasing
cylinder refractive index is to lower the frequency of all ph
tonic bands~irrespective of the shape of the cylinders!.

A second subtlety concerns the formula for the effect
dielectric constant of the array at long wavelengths. This
no longer given by Eq.~77!, but @19,28# is given by the
Maxwell-Garnett formula in the dipole approximation:

nh
25nb

2F11
2 f

~nc
21nb

2!/~nc
22nb

2!2 f
G , ~106!

where f 5pr c
2/d2. Higher order formulas for this effective

dielectric constant may be found by multipole methods. N
that the derivation of Eq.~106! involves the application of
Keller’s theorem for two-dimensional composite materi
@19,29,30#, since the boundary conditions for TE polarizatio
involve reciprocal dielectric constants, whereas those c
tomary in electrostatics for the calculation of effective d
electric constant involve the dielectric constants witho
inversion.

VII. CONCLUSION

We have seen that the mutual density of states provid
formal framework for the construction of the other density
states functions~LDOS, SDOS, and DOS!. The MDOS may
be calculated conveniently as the response of a periodic a
of cylinders to a phased array of sources, which requires o
the evaluation of the field in one unit cell rather than f
multiple unit cells. Thus, it may also be viewed as providi
a computational factorization for the calculation of density
states functions, well adapted to an efficient implementa
on parallel computers.

The analytic connections we have exhibited between
form of mode surfaces for two-dimensional systems and
variation with frequency of the density of states seem po
erful and interesting for applications of photonic crysta
01660
ua-

t

he

e
is

e

s-

t

a
f

ay
ly

f
n

e
e
-
.

The DOS for the acoustic band has been shown to be c
acterized by four numbers: an effective index for low fr
quencies~which can be calculated from known expressio
in the homogenization literature!, two band curvatures for
the point X, and one for the pointM. Analytic knowledge
concerning these band curvatures would thus be of g
value.

The steep variation of the DOS between frequencies c
responding toX and M may well offer interesting design
trade-offs. NearX, the density of states is very high, but
single frequency corresponds to a wide range of wave v
tors. NearM, each frequency corresponds to a tight range
wave vectors, and one has the advantage of operating jus
the low frequency side of an absolute band gap, but the d
sity of states is not high.

Additional insights may well flow from the study of den
sities of states for higher bands and for geometries of ph
nic crystals other than the single case studied here.
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APPENDIX: THE EMPTY LATTICE

The simplest exemplification of the various density
states functions is provided in the case of the empty latt
where we putnc5nb5nh . Using Eqs.~1! and ~4!, we see
that

GM~r ,r s ;v,k0!5
1

AWSC
(

h

eiQh•(r2rs)

S v2nh
2

c2
2Qh

2D . ~A1!

From Eqs.~14! and ~21!, we see that

M~r s ,v,k0!5(
h

dS v2
cQh

nh
D , ~A2!

which is in keeping with the normalized wave function

ch~r !5
eiQh•r

nhAAWSC

. ~A3!

We can use Eq.~A2! to get the SDOS,

S~k0 ,v!5(
h

dS v2
cQh

nh
D . ~A4!

The LDOS is

L~r s ,v!5
1

ABZ
E

BZ
d2k0(

h
dS v2

cQh

nh
D

5
nh

ABZcEBZ
d2k0(

h
dS Qh2

nhv

c D . ~A5!

We split this up into its contributions from each bandh, and
define the length of the isofrequency contour in the Brillou
//

D.

s

d

01660
.

f
e,

zone for bandh at frequencyv to beLh(v). Then, from the
second integral in Eq.~A5!:

Lh~r s ,v!5
Lh~v!nh

ABZc
. ~A6!

Hence, from Eq.~36!, the density of states for bandh is

Nh~v!5
1

UEWSC
«~r s!L~r s ,v!d2r s5

nh

ABZc
Lh~v!.

~A7!

As asserted, the DOS and the LDOS agree for a unifo
dielectric. Further, to check Eq.~44!,

E
bandh

Nh~v!dv5
nh

ABZcEbandh
Lh~v!dv51, ~A8!

since the second integral has the valueABZc/nh .
As a specific example, for the lowest or acoustic ba

and for the square array of periodd:

L0~v!5
2pnhv

c
, for v<

pc

dnh

54Fp2 22cos21S pc

nhvdD G S nhv

c D ~A9!

for pc/(dnh)<v<A2pc/(dnh). Hence,

N0~v!5
AWSCnh

2v

2pc2
, for v<

pc

dnh

5
AWSCnh

2v

2pc2 F12
4

p
cos21S pc

nhvdD G ~A10!

for pc/(dnh)<v<A2pc/(dnh). Isofrequency contours an
the DOS for this case are shown in Fig. 9.
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